Update

Jose A. Vazquez

BNL Meeting November,

Early Dark Energy

DR12

Cosmological parameter constraints from galaxy-galaxy lensing and galaxy clustering

BNL Meeting November,

The standard cosmological model

Cosmological constant

cosmology vs particle physics:

$$\langle \rho \rangle \approx 2^{-10} \pi^{-4} G^{-2} = 2 \times 10^{71} \text{ GeV}^4$$
.

$$|\rho_V| \lesssim 10^{-29} \text{ g/cm}^3 \approx 10^{-47} \text{ GeV}^4$$
.

clearly a discrepancy!!

fine tuning problem

coincidence problem

Early Dark Energy

In typical dark energy models, DE is dynamically negligible at high redshifts.

Some scalar field potentials track the energy density of the dominant species during the radiation and matter dominated eras.

$$\Omega_{de}(a) = \frac{\Omega_{de} - \Omega_{de}^{e} (1 - a^{-3w_0})}{\Omega_{de} + \Omega_{m} a^{3w_0}} + \Omega_{de}^{e} (1 - a^{-3w_0})$$

To describe the BAO peak;

Across the line of sight

$$D_C(z) = \frac{c}{H_0} \int_0^z dz' \frac{H_0}{H(z')}$$

Along the line of sight

$$D_H(z) = c/H(z)$$

The length of the ruler:

$$r_d = \int_{z_d}^{\infty} \frac{c_s(z)}{H(z)} dz$$

$$D_M(z)/r_d = \alpha_{\perp} D_{M,\text{fid}}(z)/r_{d,\text{fid}}$$

 $D_H(z)/r_d = \alpha_{\parallel} D_{H,\text{fid}}(z)/r_{d,\text{fid}}$

The BAO signal

Some approximations

H(z)

$$\rho_m(z) + \rho_{\rm de}(z) = 3H^2(z)/8\pi G$$

$$H(z) = (100 \,\mathrm{km \, s^{-1} \, Mpc^{-1}}) \times [(\Omega_m h^2) (1+z)^3]^{1/2}$$

$$\times [1 + \rho_{\mathrm{de}}(z)/\rho_m(z)]^{1/2} .$$

at high redshift

is higher in the early dark energy model by a factor $(1 - \Omega_{de}^e)^{-1/2}$, and $D_H(z)$ is smaller by the same factor.

the boosted energy density in this era reduces r_d sound horizon by a factor $(1 - \Omega_{\rm de}^e)^{1/2}$

• $D_H(z)$ is smaller by the same factor

 $lpha_{\parallel}$

at low redshift

$$D_M(z) = \frac{c}{H_0} \int_0^z \frac{H_0}{H(z')} dz'$$

depends mainly on H_0

Therefore, to keep the value of $D_M(1090)/r_d$ fixed to the CMB constraint, one must increase H_0 by approximately $(1 - \Omega_{\rm de}^e)^{-1/2}$

 $lpha_{\perp}$

Early Dark Energy

 Ω_{ede}

 r_d sound horizon by a factor $(1 - \Omega_{\text{de}}^e)^{1/2}$ $lpha_{\perp}$ α_{\parallel} 0.0035 +9.99e-1 1.014 1.014 $\Omega_{ede} = 0.0$ 69.4 $\Omega_{ede} = 0.0$ 1.012 $\Omega_{ede}\!=\!0.02$ 1.012 $\Omega_{ede}\!=\!0.02$ 0.0030 69.2 $\Omega_{ede}\!=\!0.04$ $\Omega_{ede}\!=\!0.04$ 1.010 1.010 $[r_{s,ede}/\sqrt{1-\Omega_{ede}}]/r_{s,LCDM})$ $\Omega_{ede}\!=\!0.06$ 69.0 1.010 1.008 1.008 1.006 1.004 1.004 $\Omega_{ede}\!=\!0.06$ $\Omega_{ede}\!=\!0.08$ 68.8 $\Omega_{ede}\!=\!0.08$ 68.6 68.4 68.2 1.002 1.002 68.0 0.0010 1.000 1.000 67.8 67.6 0.0005 0.998 0.998 10-1 0.02 0.04 0.06 0.08 0.00

10¹

10²

10³

10⁰

10¹

10²

10³

 10^{4}

10⁰

Scalar Field cosmology $V(\phi) = V_0[(\phi - B)^2 + A] \exp(-\lambda \phi)$

$$V(\phi) = V_0[(\phi - B)^2 + A] \exp(-\lambda \phi)$$

Scalar Field cosmology

Scalar Field cosmology

Intriguingly, non-zero Ω_{de}^e with rescaled r_d reduces tension with distance-ladder measurements of H_0 and with the level of matter clustering inferred from cluster masses, weak lensing, and redshift-space distortions.

Increasing the early dark energy fraction reduces the value of Ω_m (see Fig. 13) and will also suppress growth of structure relative to Λ CDM.